. .. . - CENTER FOR
Eidgendssische Technische Hochschule Ziirich PROJECT-BASED
LEARNING

Swiss Federal Institute of Technology Zurich

DEPARTMENT OF INFORMATION TECHNOLOGY AND
ELECTRICAL ENGINEERING

Spring Semester 2022

Visual Referee Detection on Nao
Robots for RoboCup SPL 2022

Bachelor Thesis

Lukas Molnar

Imolnar@student.ethz.ch

June 2022

Supervisor: Dr. Seonyeong Heo, seonyeong.heo@pbl.ee.ethz.ch

Professor: Prof. Dr. Luca Benini, lbenini@iis.ee.ethz.ch



Acknowledgements

Firstly I would like to thank my supervisor Dr. Seonyeong Heo for always providing me
with support and advice throughout this thesis. She offered up a lot of time to meet with
me once or twice a week and helped with everything from debugging errors to preparing
the whole data collection setup.

I would also like to thank Prof. Dr. Luca Benini and the Center for Project-Based
Learning at ETH Zurich for giving me the opportunity to work on this thesis and gain
an insight into the field of computer vision.

Further, a big thanks goes out to everyone who assisted in collecting the dataset for
this thesis: Giuliano Albanese, Filippo Spinelli, Zichong Li, Kai Zhang, Tino Himmerle,
Damian Gerber, Pascal Ernst, Luca Tognoni and again Dr. Seonyeong Heo.

Finally, I would like to thank all members of the NomadZ RoboCup team for welcoming
me and always helping out if I needed something to be explained for the codebase or the
robots.

ii



Abstract

At the 2022 edition of RoboCup a new challenge is being introduced, where Nao robots
need to detect human referee signals in real-time. This thesis aimed to design a neural
network model and implement it on a Nao robot to make accurate and quick predictions
of the referee signals. To do this, the related work on human gesture recognition was
researched, and the best performing models were implemented in Python using Tensor-
Flow. These models consisted of convolutional as well as recurrent neural networks.

To train the models, a new referee signal dataset had to be collected based on the official
description from RoboCup of the referee signals. The results from training showed that
the best-performing models were the ones combining convolutional with recurrent layers,
as opposed to a pure convolutional neural network. Also, the best-performing models
used transfer learning by initializing the network with weights pre-trained on a larger
dataset. These models achieved validation accuracies of 94% to 97%, meaning they were
able to generalize well even though the collected dataset was relatively small, consisting
of only 1409 total samples.

Finally, one of the best-performing models was implemented on a Nao robot by loading
it as a TensorFlow Lite file and feeding the images received from the robot’s camera
into the neural network. The end result was successful since the robot was able to make
live predictions every 1.5 seconds of the current referee signal, with an accuracy of over

90%.

iii



Declaration of Originality

I hereby confirm that I am the sole author of the written work here enclosed and that I
have compiled it in my own words. Parts excepted are corrections of form and content
by the supervisor. For a detailed version of the declaration of originality, please refer to

Appendix [B]

Lukas Molnar,
Zurich, June 2022

iv



Contents

[List of Acronyms|

[1.2. Objective] . . . . . ..

[2. Background|

2.1. Convolutional Neural Networks| . . . . ... .. ... ... ... ... ...

2.2.1. Long Short Term Memory (LSTM)[. . . .. ... ... ... ... ..

2.2.2. Gated Recurrent Unit (GRU)[ . . . . . ... .............

[2.3. Training Network Weights| . . . . . . . ... ... ... ... ... ...

3. Related Workl

[3.1.1. Deep 3D CNN¥|

[3.2.1. Combining 2D CNNs with LSTM or GRU| . . . . .. ... .. ...

[3.2.2. Combining 3D CNNs with Convolutional LSTM| . . . .. . .. ..

4. Datasetl

4.1.1. Setup| . . . ..

|4.2. Image Processing| . . .
|4.3. Finalizing the Dataset|

ix

10
11
11
11
12



Contents

[6. Implementation|
[5.1. Implemented Models| . . . . . ... .. ... ... oL

[5.2. Training Models on the new Dataset| . . . . . . . . ... ... ... ....
[5.3. Implementing Models on the Nao Robot| . . . . . ... .. ... ... ...
5.3.1. Loading Models as TtlLite Files| . . . . . . ... ... ... .. ...
[5.3.2.  Running Models in Real-Time|. . . . . . ... ... ... ... ...

6 R I D ol
6.1. 3D CNNI. . . . oo

[6.4. Summary| . . . .. ... e

(7. Conclusion and Future Work]

[A. Task Description|

(B. Declaration of Originality]

[C. RobCup Visual Referee Challenge Description|

[D. Model Architectures|

. Nao Robot Codel

vi

18
18
19
20
21
22
23
23
23

25
25
26
26
29

31

33

38

40

46

48

51



List of Figures

2.1. Multi-Layer Perceptron (MLP) [I]] . . ... ... ... ... ......... 3
2.2. Convolution Operation 2| . . . . ... ... ... .. .. ... .. ... ... 4
2.3. Simple RNNcell [3]. . . . . ... .. 6
2.4. LSTM cellJ@l] .................................. 7
25 GRU cell Bl . . . . . . . . 7
3.1. ResNet Block_@ﬂ ................................ 10
3.2. Res3D with Convolutional LSTM and MobileNet [5]] . . . ... ... ... 12
|4.1. Image Processing Steps|. . . . . . . . . . ... 16
|4.2. Similar Referee Signals| . . . . . .. ... ... ... 0L 17
BI._ 3D CNN Modell . . . . .. . . . e 19
0.2, 2D CNN with GRU Modell . . . . . . .. .00 o000 o000 20
b.3. 3D CNN with Convolutional LSTM Modell . . . . . . .. ... ... .. .. 21
|6.1. Accuracy and Loss History for all Models| . . . . . ... ... ... .... 27
16.2. Contusion Matrices for Best-Performing Models| . . . . . . . ... ... .. 28
16.3. Accuracy Comparison of all Models| . . . . . .. ... ... ... ... ... 30
[E.1. Module Constructor] . . . . . . .. .. . .. ... 48
[E.2. Module Function load_frame|l . . . . . . .. . . ... .. ... ... ..., 49
[E.3. Module Function predict| . . . . . . .. .. ... oo 49
|[E.4. Module Function say_prediction| . . . . . . . . ... . ... ... ..., 50
[E.5. Module Function update|. . . . . . . . ... oo 50

vii



List of Tables

[3.1. Validation Accuracy of ResNet-18 on Action Recognition Datasets |4f|. . . 10
4.1. Pixel Range for Green Screen Replacement| . . . . . . . . ... ... ... 15
[4.2. Referee Signal Dataset Splitf . . . . . . ... ... .. 0o 17
5.1. Model Parameter Summary| . . . . . . . ... .. ... ... ... .. 18
|6.1.  Abbreviations of Reteree Signal Labels| . . . . . . ... ... ... .. ... 29
16.2. Maximum Validation Accuracy for each Model] . . . . . .. ... ... .. 29
[D.I. 3D CNN Architecturel . . .. . .. . . . . . ... ... .. ... .. 47
D.2. 2D CNN with GRU Architecturel . . . . . . .. .. .. ... ... 47

viil



List of Acronyms

CNN . ... ... Convolutional Neural Network
GRU .. ..... Gated Recurrent Unit

LSTM . ... .. Long Short Term Memory
MLP . ... ... Multi-Layer Perceptron

ReLU ... ... Rectified Linear Unit

RNN . ... ... Recurrent Neural Network
SPL . .... .. Standard Platform League
TfLite . .. ... TensorFlow Lite

ix



Chapter

Introduction

RoboCup is a yearly international competition where teams compete by programming
robots to perform various tasks. Initially the tournament started as a robot soccer
competition, with the ambitious goal of having a team of robots play the FIFA World
Cup champions by 2050 [6]. Since the launch of the RoboCup tournament, many more
categories and leagues have been added to the original soccer competition. The main
goal nowadays of the RoboCup tournament is to promote research in robotics and Al
[6].

The NomadZ team of ETH Zurich competes in the Standard Platform League of RoboCup
[7]. In this league each team programs the same humanoid robots, which are produced
by Softbank Robotics and are called Nao robots [8]. No hardware modifications are al-
lowed, so the performance of the robots is solely due to the written software of the team.
The main part of the SPL competition is a 5 vs 5 soccer game between the Nao robots.
However, each year several separate challenges are added which aim to expand the ca-
pabilities of the Nao robots. In the 2022 RoboCup tournament these challenges are: A
7 vs 7 Challenge, a Dynamic Ball Handling Challenge and a Visual Referee Challenge.
The last one is the topic of this thesis.

1.1. Motivation

In the previous editions of RoboCup one thing that has not been tested is the detection
of referee signals from a human referee. Under the current SPL rules [9], the robot is only
required to listen directly to a human referee for the kick-off whistle. All other referee
decisions are communicated to the robots via electronic game controller messages. In
moving towards the 2050 RoboCup goal, robots will need to directly interpret referee
calls and signals such as whistles, spoken calls and hand signals.



1. Introduction

As a first step towards this goal, the 2022 RoboCup competition is introducing a Visual
Referee Challenge. This challenge will take place separately from the regular 5 vs 5 game,
with a pre-determined setup and 11 pre-determined referee signals. The robot needs to
predict 5 of these signals and points are awarded for each correct prediction, as well as
for how fast the prediction was made, if it was correct [9]. The full rules of the challenge

as well as a description of the referee signals can be found in

Achieving a good result at RoboCup 2022 with the NomadZ team is the main motiva-
tion for thesis, however the broader motivation is to gain a better understanding of the
computer vision techniques to detect human gestures and human actions. This topic has
many real world applications such as sign language translation [I0], which would help
people who are hearing impaired and non-verbal to communicate with others who do not
understand sign language. Another application for detecting general human actions is
in autonomous driving, where it is important to distinguish between pedestrians, cyclist,
skateboarders etc. in order to make good driving decisions.

1.2. Objective

The objective of this thesis is to implement a visual referee detection module on the Nao
robot, in order to correctly predict the 11 referee signals that will be tested at RoboCup.
The approach taken is to design a neural network model for gesture recognition and to
train the model on a self-collected dataset of referee signals. Finally, the model must be
deployed on the Nao robot to detect the referee signals in real-time.

To achieve the above mentioned objective, this project was split into three phases. Fol-
lowing are the main goals of each of these phases:

e Phase 1:
Research what types of neural network models have been successful in detecting
human gestures. Choose several of these models that are promising and implement
them in Python using TensorFlow.

e Phase 2:
Collect a video dataset of the referee signals that will be tested at RoboCup 2022.
Train the models chosen in Phase 1 on this dataset and fine tune the model pa-
rameters to improve the performance of the models.

e Phase 3:
Implement the models that performed best in training on the Nao robot. Use live
image data from the robot’s camera to feed into the neural network and make
predictions of the referee signals in real-time. Quantify the accuracy and latency
of the final implementation.



Chapter

Background

2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special case of neural networks which use
convolution instead of full matrix multiplication in the hidden layers [I]. An example of
a regular neural network is the Multi-Layer Perceptron shown in

Input Hidden Hidden Hidden Hidden Output
layer  layer 1 layer 2 layer 3 layer4  layer

T o— W Activation
function Qutput

1 {220 wsa /'S\_E/ {f(Zz xzwz‘kb)l—‘y

Ly O— Wy
Weights

Figure 2.1.: Multi-Layer Perceptron (MLP) [1]



2. Background

In the MLP the matrix (or vector) multiplications take place in each neuron, which are
represented by a circle in The vector of outputs x; from the previous layer
is multiplied with the vector of weights w; connecting the neuron to each neuron in the
previous layer. A bias b is the added to this multiplication and fed into an activation

function f, which produces an output y for each neuron (see [Figure 2.1)).

A convolution layer on the other hand applies a
filter of weights only to a specific set of inputs,
as can be seen in |Figure 2.2| This requires the
input data of a convolutional network to be
structured, as for example images and videos
are. In[Figure 2.2 the input X is an image and
the filter W slides over the image, producing
an output value y; for each position. This out-
put value is the dot-product of the filter and
the sub-matrix of X:

Figure 2.2.: Convolution Operation [2] Y1 = w1x1 + Woko + ... + WoT11 (2.1)

The weights in the filter W are what the network needs to learn. By choosing certain
filters, the network can extract various spatial features such as horizontal or vertical
edges. Since the filter slides over the whole input image it can extract the features no
matter where they are located in the image. This is the main advantage of convolution
layers for image recognition tasks over the MLP approach. To feed an image into a MLP
such as in the input layer has to contain every pixel value of the image. In
this case however, it is likely that the network will overfit to the training data since it will
treat the same features differently if they are in a slightly different region of the image.

The following layers make up a standard CNN:

e Convolution Layers:

These layers perform the convolutional operation described by The
filters W which contain the weights are also called kernels, and are applied to the
whole input of the previous layer in the network. This is called weight sharing, and
significantly reduces the number of trainable weights in comparison to the MLP
model that has dense interconnections between hidden layers. The kernel size has
to be specified in each layer, for example it is (3x3) in The amount
of kernels used also needs to be specified in each convolution layer, and is referred
to as the number of channels of that layer. Lastly, the so called stride must be
defined, which describes how large the shift is between two positions of the kernels.
For example in the stride is (1x1), since the kernel moves over by one
pixel in each of the input dimensions, to produce a new output value ;.



2. Background

As in the MLP model, an activation function f is usually applied to the output
of each convolution layer. This activation function should add a non-linearity to
the network, since the outputs y; of the kernels are only linear combinations of the
inputs z;. One of the most popular activation functions, and the one mainly used
in this paper, is the Rectified Linear Unit (ReLU) [I], which is defined as:

f(z) = max(0,x) (2.2)

Pooling Layers:

Pooling layers help reduce the size of the network by substituting the output of the
previous layer with a summary statistic of the neighboring outputs. Most commonly
this is done by taking the maximum, mean or median of the neighboring outputs
[1]. As in the convolution layers, the kernel size has to be specified. For example
(2x2) means that each (2x2) block of the input is replaced by e.g. the maximum
value of that (2x2) block. This means that the output tensor size is 25% of the
input tensor size. Pooling layers do not contain any learnable parameters (weights),
and they do not reduce the number of channels of the input layer.

Dropout Layers:

Dropout means that a given percentage of neuron outputs of a layer are set to zero.
The percentage has to be specified and remains constant throughout the training
process. However, the neurons that dropout is applied to are sampled randomly in
each iteration. The reason for using dropout is to avoid overfitting [I].

Batch Normalization Layers:

A problem faced when training neural networks is that the distribution of each
layer’s inputs changes throughout the training process, as the parameters of the
previous layers change. This slows down the training by requiring low learning
rates and careful parameter initialization. In [11] Sergey Ioffe et al. refer to this
phenomenon as "internal covariate shift", and address the problem by normalizing
layer inputs for each training batch. According to their study this allows the use of
much higher learning rates, and is less sensitive to parameter initialization. For this
project the TensorFlow Keras layer BatchNormalization was used, which performs
a transformation that maintains the mean output close to 0 and the output standard
deviation close to [12].

Dense Layers:

The hidden layers in the MLP example are called dense layers, since
each neuron is connected to every neuron in the two neighboring layers. Dense
layers are often also used in CNNs, and are placed after the convolution layers.
These layers can process the feature maps produced by the convolution layers,
forming an accurate output prediction [10].



2. Background
2.2. Recurrent Neural Networks

In contrast to feed-forward neural networks such as CNNs or the MLP, a recurrent neural
network (RNN) operates with time steps t. Each time step ¢ is represented by a so called
cell, a simple example thereof can be seen in Each RNN cell receives an input
x; and a state h;—; coming from the previous cell in the time sequence. It produces an
updated state h; as well as an output o [2].

The following parameters are needed for the

calculations of the RNN cell in or
Ty input vector @ o)
. he_q >ht
h¢: hidden layer vector (
o¢: output vector -
i A
by, b,: bias vectors

4

Uy, Vi, W,: weight matrices .

Jns Joi activation functions Figure 2.3.: Simple RNN cell [3]

With these parameters the state and output vectors are calculated in each time step as
follows:

hy = fh(UhJTt + Vihi—1 + bh) (2.3)

Oy = fo(Woht + bo) (2'4)

The activation function used in is the hyperbolic tangent tanh. However, in
general any activation function can be used.

The weight matrices and biases are what the network needs to learn during the training
process. Due to the ability to store temporal information in the cell states, RNNs have
shown success in a variety of problems such as speech recognition, language translation,
and image captioning [I3]. The types of RNNs discussed in this paper are Long Short
Term Memory (LSTM) and the Gated Recurrent Unit (GRU), since they have shown

success for various gesture recognition tasks (see [chapter 3)).



2. Background

2.2.1. Long Short Term Memory (LSTM)

A limitation of simple RNN structures such as the one in is that for longer
time sequences the cells tend to loose information. This is because in the calculations
of the output and updated state, only the state from the directly preceding time step is
taken into account. This leads to what is referred to as the short term memory problem

I13].

The LSTM cell attempts to solve this problem
by adding a state C, which stores long term in- h,

formation. shows the structure of a ?\
Cr

LSTM cell, with h being the short term mem-  Cez a » ” >
ory state and z the input as before. The inside Canh)
structure of the cell is split into three parts: I > Ozr) J

the "input" gate which produces i, the "for- pen B e Bl v B

get" gate which produces f;, and the "output" he s 1 1 ) ;ht

gate which produces o; (Figure 2.4). The gates J

themselves are made up of weight matrices as Xt
in the simple RNN example, and are trained to
determine what the short term and long term
features of the time sequence are. The exact
mathematical expressions are not noted here, but can be derived analogous to the simple
RNN example. The ¢ in represents the sigmoid function, which is used as an

activation function like tanh or ReLU and is defined as:

1
)= e

Figure 2.4.: LSTM cell [3]

(2.5)

2.2.2. Gated Recurrent Unit (GRU)

GRU uses a similar approach to LSTM in order
to solve the problem of long term memory loss
in RNNs. The difference is that GRU does not
add an extra state to the cell, as can be seen
in Instead the GRU cell uses an
"update" and a "reset" gate to extract the de-
sired temporal features of the input sequence.
The update gate produces z; and determines
the amount of previous information that needs
to pass along to the next state. The reset gate
produces r; and determines how much of the
past information should be neglected [13]. Figure 2.5.: GRU cell [3]

x|



2. Background
2.3. Training Network Weights

With the introduced architectures of convolutional and recurrent networks, the weights
(also referred to as parameters) of these networks need to be learned, to produce a desired
output for each given input. This is done by feeding a large amount of training data to
the network, and updating the weights iteratively so that they minimize a certain loss
function. The loss function used in this paper is Categorical Cross-Entropy which is a
standard choice for classification tasks in general [I4].

Categorical Cross-Entropy Loss is defined as:

Loss(y,§) = — Zyi -log(§;) (2.6)

where y is the vector of desired outputs for the given input, and ¢ is the output produced
by the network. For classification tasks with a given number of classes, it is desirable to
have the output vector consist of the probabilities the network predicts for each possible
class. This is achieved by applying the Softmax activation function to the final layer in
the network [10].
Softmax is defined as: .
6 7
Softmax(z;) = ——— (2.7)
Z Zle e

where z; are the individual outputs of the neurons in the last layer of the network, and
K is the number of classes. It can easily be seen that the K softmax values of the output
layer sum to a value of one. This lets each output z; be interpreted as the probability
the network predicts for class 7.

The way the weights are updated to minimize the loss function is through backprop-
agation and gradient descent. Backpropagation is a method that propagates the error
backward through the network, allowing the gradients of the weights in the previous
layers to be calculated [I]. Using a gradient descent algorithm, the weights are then
updated in each iteration. This is done by moving the weight values in the direction that
decreases the loss most, based on the calculated gradients.



Chapter

Related Work

The goal of Phase 1 of this project is to research the state of the art neural network models
in human gesture recognition, and see how these can be applied for the task of detecting
referee signals. This chapter discusses the related work on human gesture recognition
tasks in general, and what model architectures have been successful on various datasets.
It is important to identify what kind of gestures the datasets are made up of and if they
are similar to the referee signals used in this project. Furthermore, the models which
perform well on small datasets should be identified, since the referee signal dataset needs
to be collected from scratch and will hence be relatively small. From the most promising
models the ones chosen for this project are described in more detail in [chapter 5]

3.1. 3D Convolutional Neural Networks

For the task of classifying human gestures one needs to analyze video sequences. Since 2D
convolutional neural networks (CNNs) have achieved great results for image recognition
tasks, the main approach to video recognition tasks has been to use 3D CNNs [4]. The
extra dimension in the convolution is needed since a video consists of a stack of frames,
so the 3D convolution is applied to the 2 spatial dimensions of each frame, as well as
the time dimension between frames. Performing a 3D convolution on a frame sequence
extracts spatio-temporal features from the sequence. The spatial features are for example
the edges in single frames, like one would see when applying a 2D CNN to one of these
frames. The temporal features on the other hand find changes in time in a certain pixel
region. This is important for identifying where and when movement is occuring in the
sequence of frames. In the following subsections some implementations of 3D CNNs with
varying depths are discussed and compared.



3. Related Work

3.1.1. Deep 3D CNNs

One study analyzed the performance of various deep 3D CNNs on the following action
recognition datasets: UCF-101, HMDB-51, ActivityNet and Kinetics [4]. These datasets
consist of videos of humans participating in various activities from doing sports to playing
musical instruments. The reason the results of this study were considered, is that many
of the public "gesture" datasets focus on the human’s hands and what signs they are
making. However, for this project the full body of the referee needs to be in frame, as is
mostly the case for the humans in the action recognition datasets.

The main goal of study [4] was to determine whether

these action recognition datasets have enough data to

train deep 3D CNNs. The specific architectures that I_
they used were based on the ResNet architecture, which conv, 33, F
uses skip connections. An example of a typical ResNet

block with a skip connection can be seen in [Figure 3.1} “
"BN" stands for Batch Normalization and "ReLU" is

the Rectified Linear Unit activation function (see

. The study analyzed ResNet architectures with
depths ranging between 18 layers and 200 layers. For

this project mainly the results of the 18 layer deep net- conv, 33, F
work ResNet-18 were analyzed, since much deeper archi-

tectures would not be feasible to run on the Nao robot. Ej
ResNet-18 consists of 17 convolutional layers, config- BN
ured in blocks as in as well as one dense

layer.

The study concluded that ResNet-18 shows significant ReLU
overfitting for the UCF-101, MBDP-51 and ActivityNet

datasets. But for the Kinetics dataset, which is signif-

icantly larger than the other ones, such levels of over- Figure 3.1.: ResNet Block 4

fitting did not occur. This shows that to train deep 3D

CNNs one needs large amounts of data, which is a problem for this project since the
collected dataset will be relatively small. However, what the study [4] also showed was
that when pre-training the deep 3D CNNs on the Kinetics dataset, the models had sig-
nificantly better results for the UCF-101 and HMDB-51 datasets, as seen in
So in order to use a deep 3D CNN for the dataset in this project, the network needs to
be pre-trained on a larger dataset, ideally with gestures similar to the referee signals.

Model UCF-101 [15] | HMDB-51 [16]
ResNet-18 (scratch) 42.2% 17.1%
ResNet-18 (pre-trained) 84.4% 56.4%

Table 3.1.: Validation Accuracy of ResNet-18 on Action Recognition Datasets [4]

10



3. Related Work

3.1.2. Shallow 3D CNNs

There have also been approaches that use shallow 3D CNNs for gesture recognition. An
example is an implementation of an Indian sign language recognition model [I0]. This
method showed promising results on a relatively small dataset with 2400 samples and 20
classes. The model consisted of only three 3D convolution layers, as well as three dense
layers to process the features extracted by the convolution layers. Even though the whole
bodies of the humans performing the gestures are not in frame at least their upper bodies
are, and the humans are always facing the camera. This makes the dataset reasonably
appropriate since the referee signals will also have the human facing the robot.

Based on the results of the Indian sign language recognition model, it was chosen as one
of the models to be implemented and tested on the referee signal dataset. The exact
architecture used for the referee signal dataset, and how it had to be slightly modified
from the model used for the sign language dataset [10] is described in

3.2. Recurrent Neural Networks

Another common approach in gesture recognition tasks is to incorporate recurrent neural
networks (RNNs) since they can identify the temporal behaviour of an input sequence
such as a video. For gesture recognition the most commonly used types of RNNs in prac-
tice are LSTM and GRU, which have been explained in Two implementations
are presented in the following sections that combined these RNN types with CNNs to
detect human gestures.

3.2.1. Combining 2D CNNs with LSTM or GRU

One study used LSTM and GRU in combination with a 2D CNN to detect hand gestures
for smart-TV applications [I7]. The proposed model first applies the 2D CNN to each
individual frame in the input sequence, to extract the spatial features. These feature
maps are flattened into a 1D vector and fed into a recurrent layer (either LSTM or
GRU) to extract temporal features as well. After the recurrent layer, a dense layer is
added to combine all the features.

The dataset used in the above mentioned study is relatively small, consisting of 763 sam-
ples and 5 hand gesture classes (static as well as dynamic gestures). This suggests that
the results of the study could be useful for training models on the referee signal dataset,
since it will also be small and consist of rather few classes (11 signals in total). The
results of the study state that the 2D CNN model with GRU had the highest validation
accuracy, reaching 93%. The proposed model used transfer learning in the 2D CNN part,
which means pre-trained weights were loaded into the network during initialization. This

11



3. Related Work

was done by using the TensorFlow Keras built-in MobileNet architecture for the 2D CNN
part, for which one can load weights that were pre-trained on the ImageNet dataset [18].
The study also tested 3D CNN architectures with various depths on the dataset and
found that the 2D CNN with GRU outperformed all of them. For this reason the 2D
CNN with GRU model was chosen as the second model that would be implemented in
this project and tested on the referee signal dataset. The exact architecture is described

in [chapter 5

3.2.2. Combining 3D CNNs with Convolutional LSTM

The final approach that has been used for classification tasks of more complicated gestures
is to use 3D CNNs in combination with convolutional LSTM [5] [19]. The reason for doing
this is that the 3D CNNs extract local spatio-temporal features, which can be fed into
the LSTM layer to produce global spatio-temporal features. This was missing in the
example with 2D CNNs since there only the spatial feature maps of each frame were fed
into the LSTM or GRU layers. Hence the local temporal features, such as movement in
a certain pixel range, should be more difficult for the network to learn. Using the new
approach the network can extract local spatio-temporal features through the 3D CNN
layers as well as global features through the LSTM layers.

One study implemented the described approach using a Res3D architecture for the 3D
CNN part of the network. This architecture uses skip connections like ResNet-18, which
has already been discussed. Instead of a regular LSTM or GRU recurrent layer, the study
used a convolutional LSTM layer, which can take 2D feature maps as inputs unlike a
regular LSTM network. After the recurrent layer the study fused the local and global
spatio-temporal features using a 2D CNN Mobilenet architecture. The summary of the
network layout is show in

Video

Res3D ConvLSTM —> MobileNet —> 3DPooling N
L*112*112*3

L/2*28*28*256 L/2#28%28%256 | **° | L/2*7%7%1024 | *** | & Softmax
3 —> —>

Figure 3.2.: Res3D with Convolutional LSTM and MobileNet [5]

The dataset used is called IsoGD, with a large amount of 41,662 videos in total for
training and validation [20]. The dataset consists of 249 static and dynamic gestures,
with the upper body of the human always being in frame. Some of the gestures are very
similar to the referee signals, which is why this model was chosen to be tested on the
referee signal dataset. However, as explained in [subsection 3.1.1| deep network topologies
perform significantly better on small datasets when pre-training the models on larger
datasets. So for this project the IsoGD dataset was chosen to pre-train the model, after
which it could be trained on the smaller referee signal dataset (see .

12



Chapter

Dataset

Since this is the first time that referee signals are being tested at RoboCup, there is no
existing dataset of the required signals. For this reason a new dataset had to be created
from scratch, based on the description of the signals in the RoboCup rule book [9]. This
chapter explains how the dataset was collected using the Nao robot and how the images
were processed to be used for training the models.

4.1. Data collection

4.1.1. Setup

The same setup which is described in the RoboCup rule book [9] was used to collect the
referee signal dataset. The full description can be found in[Appendix C| In summary, the
position of the robot is in the center of the soccer field, facing the sideline. The referee
is standing on the sideline, facing the robot and performing the signals. In order to train
the models on various backgrounds instead of only the one wall in the lab, a green screen
was mounted behind the referee. Using different backgrounds in the dataset should train
the models to work on any background, which is important since there is no description
for how the background scene will look like at RoboCup.

In total 10 volunteers assisted in collecting the referee signal dataset. They wore red
gloves, since the RoboCup rules for this challenge state that the referee at the competition
must wear read gloves [9]. In regards to clothing the rules state that the RoboCup referee
will wear a black and white striped jersey "if available". To be sure that the model can
also predict the signals in the case where the referee is not wearing such a jersey, the
subject were given a free choice of clothing.

13



4. Dataset

4.1.2. Procedure

The subjects performed each referee signal for several seconds, while the image data
was transferred from the robot to a local machine. This was done by using the module
ImageAcquisition in the robot’s codebase, which stored the images received from the
robot’s camera at a certain frame rate. The images could then be copied to the local
machine using SCP (Secure Copy Protocol). For the frame rate 10 Hz was chosen, since
this is the frame rate used in the IsoGD dataset mentioned in One of the
models uses transfer learning with weights pre-trained on this dataset, so it is beneficial
to use the same frame rate in the new referee signal dataset.

The description of the gestures in the RoboCup rule book [9] is not very specific (see
, in that there is no statement on the exact rotation of the hand when the
arm of the referee is extended. This is why each subject performed all of the gestures
twice, once with the palm of the extended hand facing the robot, and once with the
extended hand rotated 90 degrees so the robot sees the hand from the side. This gives
the dataset more variety and should let the model make better predictions no matter
how the hand of the referee is rotated.

4.2. Image Processing

In order to train the neural network models on different backgrounds, the green screen in
the image received from the robot had to be replaced by various background images. In
total 34 background images were used, with various lighting conditions and background
settings. Images were chosen with and without people in the background to create further
variety in the training set.

The following steps had to be taken to replace exactly the right background pixels, as
well as to denoise and resize each image:

1. Find Green Pixel Range:
To replace the green pixels in each image with a new background, first the range
of green pixel values had to be determined. The exact range fluctuated on the
different days when data was collected, because of small differences in the lighting
condition of the room. An approximate general range is given in

2. Additional Green Requirement:
Since there were always some colors within the given pixel range that did not belong
to the green background, an extra condition was added that the green value of each
pixel must have a value 20-40 units higher than the red and blue values of the pixel.
This condition also fluctuated a bit for the different days when data was collected,
and hence had to be fine tuned each time.

14



4. Dataset

Lower Limit | Upper Limit

Red 0 130
Green 80 230
Blue 0 140

Table 4.1.: Pixel Range for Green Screen Replacement

3. Replace Green Screen:
Now all pixels that are within the green range from step 1 and fulfil the extra
requirement in step 2 can be replaced by the pixels of the new background image.
When loading the background image, it was cropped randomly to prevent the
network from overfitting to the exact positions of the referee in respect to the
background scene. An example of an image before and after replacing the green

screen can be seen in [Figure 4.1

4. Denoise Image:

Since the image quality of the robot is not very high there are usually small patches
of pixels that belong to the background but were not replaced in the last step.
These pixels usually had similar values to pixels that were part of the subject
performing the referee signal, so the green range could not just be adjusted to
include them without erasing parts of the referee subject. To solve this problem
the OpenCV function fastN1MeansDenoising was used, which performs a non-
local means denoising algorithm on the image. Like this most of the remaining
green patches were smoothed out to become part of the background.

5. Resize Image:
Since the input tensor of the neural network takes images with pixel dimensions
112x112, the last step was to resize the images to these dimensions. This also
helped with smoothing out the remainder of the green patches which the denoising
algorithm was not able to process. The final result for an example image can be

15



4. Dataset

(a) Image from Robot (b) Green Screen replaced

(c) Denoised and Resized

Figure 4.1.: Image Processing Steps

16



4. Dataset
4.3. Finalizing the Dataset

To feed the image data into the neural network a fixed sequence length had to be used.
The choice was made to use 15 frames for the sequence length in order for the robot
to make a prediction of the referee signal every 1.5 seconds (frame rate 10 Hz). The
reason why 15 frames where chosen instead of a smaller number for faster predictions
is that when analyzing the referee signals there is the risk of making a false prediction
to quickly for certain signals. For example shows two signals "kick-in left"
and "corner-kick left". One can suspect that while the referee is getting in position for
"kick-in left" the extended arm will pass through the position of "corner-kick left" for a
few frames. This causes a risk of predicting the wrong signal too soon if the number of
frames per sequence is chosen too low.

(a) Kick-in left (b) Corner-kick left

Figure 4.2.: Similar Referee Signals

The finalized dataset contains 1,409 samples of 15 frame sequences. These samples were
split into training and validation sets, with different referee subjects and different back-
grounds used in each set, in order to detect if the models are overfitting to the training

data. In a summary of the dataset split is shown. The dataset is not made
public, due to the fact that other teams competing at RoboCup could make use of it.

Training Set | Validation Set | Total
Samples 1,190 219 1,409
Referee Subjects 7 3 10
Backgrounds 28 6 34

Table 4.2.: Referee Signal Dataset Split

17



Chapter

Implementation

From the findings of the related work in three model concepts were chosen to
be implemented for the referee signal detection task. This chapter presents the three
model architectures and how they were trained on the new referee signal dataset. The
implementation of the trained models on the Nao robot to detect the referee signals in
real-time is also described.

5.1. Implemented Models

The three models chosen from are the following: 3D CNN (shallow imple-
mentation), 2D CNN with GRU and 3D CNN with convolutional LSTM. The following
sections describe the structure of each of these models in detail, and how the implementa-
tions discussed in were adapted to run on the referee signal dataset.
displays a summary of the number of trainable and non-trainable parameters (weights)
for each model, in their new implementations for the referee signal dataset.

Model Trainable Non-Trainable | Total
Parameters Parameters Parameters

3D CNN 2,412,428 1,728 2,414,156

2D CNN with GRU 3,428,172 23,936 3,452,108

3D CNN with ConvLSTM | 1,935,244 8,269,376 10,204,620

Table 5.1.: Model Parameter Summary

18



5. Implementation

5.1.1. 3D CNN

The 3D CNN model chosen to be implemented for the referee signal dataset is based
on the shallow 3D CNN model discussed in The motivation being that this
model showed success in predicting Indian sign language gestures on a relatively small
dataset of 2400 samples [I0]. A summary of the model as implemented for the referee
signal dataset can be seen in [Figure 5.1] with the tensor dimensions noted for each layer.
A list of each individual layer can be found in [Appendix D} including how many weights
each layer contains. Following is an explanation of with the corresponding
parameter choices for each layer.

4 Conv3D
Input Video R - R . .
s —>  Jayers > > > > 5
1*7*7*128
Dense SO‘];'ttp“t
Dense Dense 64 oftmax
256 256 12
Flatten
6272

Figure 5.1.: 3D CNN Model

For clarity, the input tensor dimensions in are noted as 15*112*112*3 since
the input to the network is a sequence of 15 frames, each with dimensions 112*112, and
3 color channels (RGB). The model then consists of four convolution layers, using kernel
size (3x3x3) and stride (1x1x1). Padding is added to the convolution layers, so the input
dimensions are not reduced. In-between each convolution are the following layers: ReLLU
activation, batch normalization and max pooling with a (2x2x2) pool size. The last max
pooling layer has to use a (1x2x2) pool size since the first dimension has been reduced
to size one at this point. This can be seen in where the output tensor of the
four convolution layers has size 1*7*7*128.

After the four convolution layers the tensor of the created feature maps is flattened and
fed into a sequence of three dense layers containing 256, 256 and 64 neurons. The dense
layers use ReLU activation and after the first two dense layers dropout of 30% is applied.
After the last dense layer the output layer with Softmax activation is added. There are
12 classes in the output layer, since on top of the 11 referee signals a class "no signal"
was added, where the referee is standing still. This was done since according to the
description of the RoboCup challenge this will be the initial stance of the referee at the

competition (see |[Appendix CJ).

19



5. Implementation

Finally, in order to reduce overfitting L1 regularization was applied to the convolution
and dense layers in the 3D CNN model, as proposed by the implementation of the Indian
sign language detection module [10].

5.1.2. 2D CNN with GRU

The second model is based on an implementation of a 2D CNN with GRU for hand
gesture recognition, as described in [chapter 3] This implementation showed better results
than various 3D CNN models on the same dataset, which is why it was chosen to be
implemented in this project. Since a 3D CNN was also implemented in this project, the
results of these two models can be compared to see if for the referee dataset the 2D CNN
with GRU also shows better results. displays a summary of this model in it’s
implementation for the referee signal dataset. In again a list of all layers
can be found, with the number of weights in each layer. The following section explains
in more detail, and how the model extracts the spatial and temporal features
of the input frame sequence separately.

Input Video - > R R S
15*112*112*3 i -> >
Time-distributed GRU Dense S%l;ttr%:;
MobileNet Time-distributed ¢ 128 2
MaxPool & Flatten
151024

Figure 5.2.: 2D CNN with GRU Model

The 2D CNN part of the network is made up of the TensorFlow Keras built-in Mo-
bileNet architecture, and is initialized with weights pre-trained on the ImageNet dataset
[18]. This 2D CNN produces spatial feature maps of size (3x3) with 1024 channels for
each frame in the input sequence. Since the 2D CNN should be applied to each in-
dividual frame of the input sequence, it is added to the model using the Keras layer
TimeDistributed. Max pooling with kernel size (3x3) is then applied to the 2D CNN
feature maps and they are flattened to produce 1024 feature vectors for each frame.
These vectors are then fed into the GRU network, consisting of 15 cells since there are
15 frames. The GRU network produces one single output vector of size 64 which ex-
tracts the temporal features of the frame sequence. A dense layers with 128 neurons and
ReLU activation is added to combine all features. Finally, the output layer with Softmax
activation terminates the network.

20



5. Implementation

5.1.3. 3D CNN with Convolutional LSTM

The final model is based on the implementation of a 3D CNN with convolutional LSTM
for gesture recognition on the IsoGD dataset [5], as discussed in [chapter 3| |Figure 5.3|
displays a summary of this model in it’s implementation for the referee signal dataset.
Since the network is very large, the list of all layers is not added to the appendix. However,
the code from the original study is publicly available on github [21], where the full model
architecture can be found.

Input Video > Res3D > | S S
15*112*112*3 ‘ 8+28%28*25 I | ’ -
. Output
MobileNet
ConvLSTM 1414256 Softmax
28728128 AveragePool 12
& Flatten
2304

Figure 5.3.: 3D CNN with Convolutional LSTM Model

Following is a description of the main parts of the network displayed in
Additionally it is explained how some layers in the network were adapted from the original
implementation to train the model on the referee signal dataset. The model consists of
three main parts:

1. 3D CNN (so called Res3D) for local spatio-temporal feature extraction
2. Convolutional LSTM for global temporal feature extraction

3. 2D CNN (MobileNet) for feature fusion

The Res3D part was taken one to one from the implementation in the study [5]. It is a 3D
CNN architecture which utilizes skip connections, similarly to the ResNet architectures
discussed in [chapter 3] For the convolutional LSTM layer the study created some custom
functions which adapted the convolution operations within the LSTM cells. However, for
this study the regular Keras layer ConvLSTM2D [22] was used. Since the referee dataset
is much smaller than the IsoGD dataset, only one ConvLSTM2D layer was used instead of
two, to reduce the chance of overfitting. Also, for the same reason a smaller version of
the 2D CNN MobileNet was used in the third part of the network. The purpose of this
2D CNN is to fuse to local and global features extracted by the Res3D and ConvLLSTM
parts of the network. Finally, average pooling with kernel size (4x4) is applied to the
MobileNet output, upon which the tensor if flattened and passed to the network’s output

layer with Softmax activation (see [Figure 5.3)).

21



5. Implementation

In [chapter 3|it was stated that deep 3D CNN models perform significantly better on small
datasets, when initializing the weights with ones pre-trained on a larger dataset. Since
weights pre-trained on the large IsoGD dataset have been made public for the Res3D
layers, these weights were loaded into the network to train on the referee dataset. In
order to also load pre-trained weights for the other layers, the adapted model with one
ConvLSTM2D layer and a smaller MobileNet was trained on the large IsoGD dataset, and
saved as a Keras model. These weights could be loaded into the rest of the network when
preparing to train on the referee signal dataset.

Since even with the smaller version of the model the number of parameters was still
over 10 million, the weights in the Res3D layers were frozen during the training process.
This means that they were initialized with the weights pre-trained on the IsoGD dataset,
and not updated further while training the network on the referee signal dataset. Like
this, the number of trainable parameters ended up being 1,935,244 and the number of of

non-trainable parameters 8,269,376 (see [Table 5.1J).

5.2. Training Models on the new Dataset

The finalized dataset was made up of 1409 videos, each video being a sequence of 15
frames. The dataset was split into training and validation sets with the two sets con-
taining different referee subjects performing the signals, as well as different backgrounds
(see . The neural network models were programmed in Python using Tensor-
Flow. They were run on a remote server using a Nvidia Titan RTX GPU for improved
performance.

Each model was trained for 25 epochs with a batch size of 16. For the loss function
Categorical Cross-Entropy was used, as described in[chapter 2] For the optimizer "Adam"
was used, which is a gradient descent method that has proven to be very efficient when
working with large problems involving a lot of data or parameters [23]. Adam adds a
momentum term to the weight update function, which accelerates the gradient descent
algorithm. It also makes use of Root Mean Square Propagation (RMSP), which is an
adaptive learning algorithm that updates the weights based on the exponential moving
average of the respective gradients [23].

To reduce the models from overfitting to the training data, three data augmentation
techniques were implemented: random crop, random brightness augmentation and ran-
dom contrast augmentation. By augmenting the training data randomly during each
iteration of the dataset the model can learn to generalize better. This is especially useful
in the case of a small dataset such as the referee signal one, since overfitting is a severe
concern.

22



5. Implementation
5.3. Implementing Models on the Nao Robot

The training of the implemented network models on the new referee signal dataset con-
cluded phase 2 of this project. The results of which are described in [chapter 6l The
final phase consisted of implementing the best performing models on the Nao robot, in
order for the robot to make predictions of the referee signals in real-time. The following
sections describe how the trained models were saved and loaded onto the robot, as well
as how the live camera data from the robot was fed into the network to make continuous
predictions.

5.3.1. Loading Models as TfLite Files

After the training process was completed, the state of the network with the lowest val-
idation loss achieved was saved as a TensorFlow Keras model. In order to implement
this model on the Nao robot, it had to be converted to a TfLite (TensorFlow Lite) file.
TensorFlow Lite is an open-source deep learning framework, which provides a set of tools
that enables on-device machine learning. It allows neural network models to be run on
mobile, embedded and IoT (Internet of Things) devices [24]. Once the model was con-
verted to a TfLite file, it could be loaded onto the Nao Robot following the instructions
in the TensorFlow Lite C++ API Reference [25].

First however, a module TfLiteRefereePerceptor and representation RefereePercept
were defined in the robots code base. The representation only contains a streamable
parameter nr_frames which stores how many frames have been loaded into the input
tensor of the network. The module on the other hand is where the TfLite file for the
neural network model is loaded and run. The main code for the module can be found in

Append .

The constructor of the module TfLiteRefereePerceptor loads the TfLite file and ini-
tializes the TfLite interpreter. Also, the constructor checks whether the input dimensions
to the network are correct, and allocates an address in the robot’s memory to the input
tensor of the network. The remaining functions are used to run the neural network model
in real-time.

5.3.2. Running Models in Real-Time

With the model loaded through the TfLite file the input tensor of the network has to be
filled with live image data. Like this the robot can make continuous predictions of what
referee signal it is seeing.

To load the input tensor a function update is called each time the robot receives a
new image from it’s camera (this occurs every 0.1 seconds). Then the received image
is loaded into the input tensor using the the function load_frame (see code snippets in

23



5. Implementation

. Important to note here is that the image first needs to be resized to the
correct network dimensions of 112x112, and converted to the right color space of RGB
instead of YCbCr. The latter is used by default on the robot whenever an image is
converted to a cv::Mat data structure, which needs to be done in this case to resize the
image to 112x112. Furthermore, the sequence of pixel color values has to be set to BGR
(blue, green, reed), since this is how the OpenCV function imread stores images in an
array [26]. This function was used when reading the images from the collected referee
signal dataset during training, so the pixel color sequence needs to be the same when
loading the input tensor with live image data.

Once 15 frames are loaded into the input tensor, the update function calls a predict
function (see code snippet in . This function reads the output tensor of the
network, which contains the probabilities for each referee signal. The argmaz signal is
then printed to the console along with it’s probability predicted by the network. If the

probability is over 90% the function say_prediciton (see|Appendix E) is called and the
robot announces the signal and which team it is being shown for (blue or red team).

After this, the parameter nr_frames is set to 0 by the function refereePercept.reset (),
meaning that the process starts all over again and the input tensor to the network is
overwritten until another 15 frames are received. Like this continuous predictions can
be made every 1.5 seconds by the Nao robot, and they are announced if the confidence
is over 90%. This confidence threshold was chosen based on the limited tests done in
the lab, however more tests should be done before the RoboCup challenge in order to
optimize when the robot announces it’s final prediction. This is important since at the
RoboCup challenge the robot has only one chance to make a prediction of the referee
signal.

24



Chapter

Results and Discussion

To compare and evaluate the performance of the trained models, the collected referee
signal dataset was split into training and validation sets. The validation set was chosen to
have different people performing the referee signals, as well as different backgrounds, in
order to detect more easily if the models are overfitting to the training set. In this chapter
the results of the three trained models from are presented and discussed.

6.1. 3D CNN

The 3D CNN model achieved a maximum validation accuracy of 73.2%, with the train-
ing history displayed in The model is clearly overfitting, since the training
accuracy is significantly higher thant the validation accuracy. This means the model is
not generalizing well and makes many wrong predictions for new referee subjects with
new backgrounds.

These results indicate that the proposed shallow 3D CNN model is not suitable for the
collected referee signal dataset. Referring back to this model was based on
the successful implementation of a shallow 3D CNN for Indian sign language recognition
[10]. That implementation used a dataset of size 2400, which is larger than the referee
signal dataset, but small in comparison with other gesture datasets such as IsoGD [20].
Hence, one can conclude that this shallow 3D CNN implementation is not suitable for
all small human gesture datasets.

25



6. Results and Discussion

6.2. 2D CNN with GRU

The 2D CNN with GRU model achieved a maximum validation accuracy of 94.6%, with
the training history displayed in Here there is practically no overfitting, with
the validation accuracy being very close to the training accuracy throughout the training
process (see . The confusion matrix for this model is displayed in
with the list of label abbreviations shown in [Table 6.1l In the confusion matrix one
can see that indeed there are only few false predictions made. The entries shown in the
confusion matrix are the samples from the validation set. They sum to 219 since there

are 219 samples in the validation set (see [chapter 4)).

One can conclude that this model performs very well on the referee signal dataset and
notably better than the 3D CNN model. This is the same result as found in the study
which proposed the 2D CNN with GRU model [17]. That study had the networks detect
hand gestures for smart-TV applications and achieved a validation accuracy of 93% using
the 2D CNN with GRU model. This is very close to the 94.6% achieved for the referee
signal dataset, letting this model be classified as a success.

6.3. 3D CNN with Convolutional LSTM

The 3D CNN with Convolutional LSTM model achieved a maximum validation accuracy
of 96.9%, with the training history displayed in Here there is also practically
no overfitting, since the validation accuracy is nearing 100%. What is interesting though,
is that the validation accuracy has some sharp changes in the initial part of the training
process (see . At this point the training accuracy is already around 95%,
however the model is still able to improve the validation accuracy, achieving over 90%
consistently for the last 10 epochs. A possible explanation for these fluctuations in
validation accuracy is that the model has a very high number of parameters. Even
though most of the parameters are non-trainable, the high total number could be the
reason for the model taking more epochs until it is able to generalize well and achieve a
stable high validation accuracy.

The confusion matrix for this model is displayed in As for the 2D CNN with
GRU model there are very few false prediction, letting this model too be classified as a
success.

26



6. Results and Discussion

0.8

0.6 1

accuracy

0.4 1

0.2 1

0.0 -

—— fraining
—— validation

o] 5 10 15 20 25
epoch

(a) 3D CNN - Accuracy

1.0 1

0.8 1

0.6 1

accuracy

0.4 1

0.2 1

— training
— validation

0 5 10 15 20 25
epoch

(c) 2D CNN with GRU - Accuracy

1.0+

0.9 1

0.8 1

0.7 1

accuracy

0.6

0.5 1

0.4 1

0.3 4

—— training

— validation

()

0 5 10 15 20 25
epoch

3D CNN with ConvLLSTM - Accuracy

loss

loss

loss

3.01

2.5

—— ftraining
—— validation

epoch

(b) 3D CNN - Loss

— ftraining
—— validation

epoch

(d) 2D CNN with GRU - Loss

—— fraining
—— validation

epoch

(f) 3D CNN with ConvLSTM - Loss

Figure 6.1.: Accuracy and Loss History for all Models



Actual Labels

Actual Labels

6. Results and Discussion

2 20.0
& 17.5
e
2
?2 15.0
L]
[
v
o 12.5
v
(]
5 10.0
(]
L) -7.5
& 0
v 0 o o 2 5.0
L
-0 0 1 0 0 0O 0 O 2.5
[T
k-0 0o 0 0 0O O 0 O
| | | | | | | | | | | - 0.0
NS K-l K-r GK| GK-r CK| CKr G-I Gr FKI FKr FT
Predicted Labels
(a) 2D CNN with GRU
E 0 0 0 0 0 20.0
T 2 0 0 0 o0
f 17.5
o 0 0 0 1 0
v, 15.0
% 0 0 0 0 0
[
v 0O 0 0 0 O
o 12.5
v 0 0 0 0 0
(]
v 0 0 0 0 O 10.0
(]
3 0 0 17 15
& 0 o 0 0
v 0 o 0 0 30
L
-0 0 0 0 0 O ] 325
L
k-0 0 0 0 0 o© 0
| | | - 0.0

i i i i i i i i
NS K-l Kl-r GK-| GK-r CK-l CK-r G| G FK-l FK-r FT
Predicted Labels

(b) 3D CNN with ConvLSTM

Figure 6.2.: Confusion Matrices for Best-Performing Models

28



6. Results and Discussion

NS No signal
KI-1 Kick-in left
KI-r Kick-in right
GK-1 Goal-kick left
GK-r  Goal-kick right
CK-1  Corner-kick left
CK-r Corner-kick right

G-l Goal left
G-r Goal right
FK-1 Free-kick left
FK-r  Free-kick right

FT Full-time

Table 6.1.: Abbreviations of Referee Signal Labels

6.4. Summary

In summary, the best performing models were clearly the ones making use of recurrent
layers, namely the 2D CNN with GRU as well as the 3D CNN with ConvLSTM.
lists the maximum validation accuracy achieved by each model and
displays the histories of training and validation accuracy for all three models. One can
clearly see how much quicker the accuracies increase for the models with recurrent layers
over the 3D CNN model. The main reason for this is likely that these models utilize
transfer learning by initializing the network with pre-trained weights. The 3D CNN on
the other hand which uses random weight initialization takes significantly more epochs
until training and validation accuracies start rising (see . Additionally, once
the accuracies of the 3D CNN have stabilized, the validation accuracy is significantly bel-
low the other two models. This lets one make the assumption that networks combining
recurrent layers with convolution layers are more appropriate for the task of detecting
referee signals than a pure convolutional neural network.

Model Validation
Accuracy

3D CNN 73.2%

2D CNN with GRU 94.6%

3D CNN with ConvLSTM 96.9%

Table 6.2.: Maximum Validation Accuracy for each Model

29



training accuracy

6. Results and Discussion

1.0 4

o
o
|

e
o
1

o
S
1

0.2 A

—— 3D CNN

_/\/—/_/— 2D CNN with GRU
—— 3D CNN with ConvLSTM

0 5 10 15 20

epoch

(a) Training Accuracy

25

validation accuracy

1.0+

o
]
1

o
o
1

o
IS
|

o
]
1

0.0

—— 3DCNN
—— 2D CNN with GRU
—— 3D CNN with ConvLSTM

5 10 15 20 25
epoch

(b) Validation Accuracy

Figure 6.3.: Accuracy Comparison of all Models

30



Chapter

Conclusion and Future Work

The goal at the beginning of this project was to implement a referee detection module on
a Nao robot, in order to predict the 2022 RoboCup challenge referee signals in real-time.
This goal was achieved by collecting a referee signal dataset from scratch and training
neural network models on this dataset.

The results of the trained models showed that the best performing networks were the 2D
CNN with GRU and the 3D CNN with ConvLSTM. These models both use a combina-
tion of convolution layers and recurrent layers to extract spatial and temporal features
from the input frame sequence. The validation accuracies achieved by these models were
94.6% for the 2D CNN with GRU and 96.9% for the 3D CNN with ConvLSTM. The val-
idation set contained different subjects performing the referee signals as well as different
backgrounds to the training set. This shows that these models were able to generalize
well and make accurate predictions on new data.

The third model which was tested showed a lower maximum validation accuracy of 73.2%,
and took significantly more epochs for the accuracy to increase to this level. The sus-
pected reason for the slow increase is that this model did not load pre-trained weights
when initializing the network like the other two models did. This leads to the conclusion
that using pre-trained weights, whether they were pre-trained on ImageNet for the 2D
CNN with GRU or on IsoGD for the 3D CNN with ConvLSTM, is the way to go for
detecting referee signals. The likely reason for this is that the referee signal dataset is
relatively small, consisting of only 1409 samples in total. As described in other
studies have also shown that networks such as ResNet-18 perform significantly better on
small datasets, when pre-training them on larger datasets.

When disregarding the slow increase in accuracy of the 3D CNN model, one can see that
the validation accuracy stabilizes at around 50% to 70%, which is still significantly lower
than the results achieved by the other two models. This leads to the further conclusion
that combining CNNs with RNNs is a more appropriate solution for detecting referee

31



7. Conclusion and Future Work

signals than pure CNNs. The same conclusion was reached by the studies proposing
the 2D CNN with GRU and 3D CNN with ConvLSTM models for other human gesture

datasets (see [chapter 3)).

As for the implementation on the Nao robot, at this point only the 2D CNN with GRU is
able to run on the Nao robot, due to memory issues faced when trying to run the larger
3D CNN with ConvLSTM model. When running the 2D CNN with GRU the robot is
able to make real-time predictions of the referee signals every 1.5 seconds, with only a
small delay on top of these 1.5 seconds where the robot is collecting the image data.
From the limited amount of tests done in the lab, the perceived accuracy is around 90%
or slightly above even with people in the background, however the 94.6% achieved on the
validation set was not quite reached. Further work needs to be done to determine which
sort of backgrounds are still difficult for the model to predict, and the dataset can still
be expanded by adding more of such backgrounds to train on.

There is also more work to be done, by testing if the frame rate can be increased from
10 Hz or if the number of frames passed to the network can be decreased from 15. This
would let the robot make faster predictions, but needs to be tested rigorously so the robot
does not make false predictions too soon for similar looking signals. Also, it needs to be
optimized when the robot announces its prediction at the RoboCup challenge, since it
has only one chance to do so. Currently a threshold confidence of 90% is set, but more
tests need to be made to insure the robot prioritizes announcing a correct prediction over
a quick one, since this ensures more points (see challenge description in .
Finally, if at some point the human referee will be integrated into the regular 5 vs 5
soccer game, the referee detection module needs to be adapted to run in parallel with
the rest of the robot’s code for the 5 vs 5 soccer game.

32



Appendix A

Task Description

33




CENTER FOR

Eidgendssische Technische Hochschule Ziirich PROJECT-BASED
Swiss Federal Institute of Technology Zurich LEARNING

Task Description for a Bachelor Thesis on

Visual Referee Detection on Nao Robots
for RoboCup SPL 2022

at the Departement of Information Technology and
Electrical Engineering

for

Lukas Molnar

Imolnar@student.ethz.ch

Advisors: Dr. Seonyeong Heo, seonyeong.heo@pbl.ee.ethz.ch
Professor: Prof. Dr. Luca Benini, Ibenini@iis.ee.ethz.ch

Handout Date: 21.02.2022
Due Date: 30.05.2022



Project Goals

RoboCup is an annual international robotics competition founded in 1996 to promote
robotics and artificial intelligence research. The main focus of RoboCup is the soccer
game between autonomous robots. Among the five different leagues, RoboCup Stan-
dard Platform League (SPL) is for standard humanoid robots, called Nao from Softbank
Robotics. Besides the main league, RoboCup SPL also hosts small leagues called tech-
nical challenges. The objective of the technical challenges is to solve specific technical
problems regarding the gameplay within the league.

One of the technical challenges for RoboCup SPL 2022 is Visual Referee. The challenge
aims to recognize the signs of the referee wearing red gloves. This project is to design
a visual referee detection system for the technical challenge. This project will develop
a neural network model for visual referee detection and implement a visual referee
detection system for Nao robots. Finally, this project will deploy the model on a robot
and evaluate the performance of the system.

Tasks

The project will be split into three phases, as described below:

Phase 1 (Week 1-4)
1. Set up the development environment for the project.
2. Review existing gesture detection models (e.g., [1, 2, 3]).

3. Design a neural network model for visual referee detection from scratch.

Phase 2 (Week 5-11)
1. Collect a referee sign dataset with a robot.
2. Train the neural network model with the dataset.

3. Implement the visual referee detection system.
a) Implement a visual referee detection module.
b) Define the behavior of the robot with the module.

Phase 3 (Week 12-14)
1. Evaluate the system in terms of accuracy and latency.
2. Demonstrate the visual referee detection system with a robot.
3. Polish the implementation for submission.

4. Finalize the report and presentation.



Milestones

By the end of Phase 1 the following should be completed:

¢ Development environment.

* Neural network design for visual referee detection.
By the end of Phase 2 the following should be completed:

® Visual referee sign dataset.

* Neural network model trained with the collected dataset.

¢ First implementation of the visual referee detection system.
By the end of Phase 3 the following should be completed:

¢ Final system.

¢ Final demo with a robot.

¢ Final report and presentation.

Project Organization

Weekly Report

There will be a weekly report sent by the candidate at the end of every week. The main
purpose of this report is to document the project’s progress and should be used by the
student as a way to communicate any problems that arise during the week.

Project Plan

Within the first month of the project, you will be asked to prepare a project plan. This
plan should identify the tasks to be performed during the project and sets deadlines for
those tasks. The prepared plan will be a topic of discussion of the first week’s meeting
between you and your advisers. Note that the project plan should be updated constantly
depending on the project’s status.

Final Report and Paper
PDF copies of the report are to be turned in. References will be provided by the supervi-
sors by mail and at the meetings during the whole project.

Final Presentation

There will be a 15 min presentation with 5 min Q&A at the end of this project in order to
present your results to a wider audience. The exact date will be determined towards the
end of the work.

ii



Bibliography

[1] P. Narayana, R. Beveridge, and B. A. Draper, “Gesture recognition: Focus on the
hands,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[2] O. Koptiklii, A. Gunduz, N. Kose, and G. Rigoll, “Real-time hand gesture detec-
tion and classification using convolutional neural networks,” in 2019 14th IEEE
International Conference on Automatic Face Gesture Recognition (FG 2019), 2019, pp. 1-8.

[3] L. Zhang, G. Zhu, L. Mei, P. Shen, S. A. A. Shah, and M. Bennamoun,
“Attention in convolutional Istm for gesture recognition,” in Advances in
Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
287e03db1d99e0ec2edb90d079e142£3-Paper.pdf

iii



Appendix B

Declaration of Originality

38



ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Visual Referee Detection on Nao Robots for RoboCup SPL 2022

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):
Molnar Lukas

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

Zurich, 30.05.2022

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.



Appendix C

RobCup Visual Referee Challenge

Description

40



B.2 Visual Referee Challenge
B.2.1 Challenge Goal

In the current SPL rules, the only time that a robot is required to listen directly to the human referees
is for the kick-off whistle. Otherwise, all human referee decisions are communicated to the robots
via electronic GameController messages. In moving towards the 2050 RoboCup goal, robots will
need to directly interpret referee calls and signals (such as whistles, spoken calls and hand signals),
rather than receive information from an external electronic source.

This technical challenge tests a robot’s ability to identify three categories of hand signals:

1. Static hand signals with one hand.
2. Static hand signals with two hands.
3. Dynamic (motion) hand signals with a one or two hands.
The intent of this challenge is to choose a subset of potential referee calls in SPL games and test

ability of a robot to recognise different types of hand signals in preparation for adoption in RoboCup
games, rather than compile a complete set of all referee signals.

B.2.2 Challenge setup

One robot of the challenged team is placed in the center circle facing the head referee, standing
upright (stiffened) with both hands by its side. The robot should be running in the challenge mode
at the start of the challenge. The team is free to choose how the software is started.

The head referee must stand on the T-junction of the center field line, opposite to the GC. The referee
must wear a “black-and-white” stripped referee jersey (if available) and must wear red gloves. The
purpose of this clothing is to clearly distinguish the referee and their hands from background people.




The description of this challenge (and hand-signals) is described based on the viewpoint of the
head referee. In these descriptions the “red team” is defined as playing from left-to-right, and the
“blue team” as playing from right-to-left. The use of colours for identifying teams is used to give
equivalence to the head referee calls during SPL games.

The general procedure is as follows:

1. The referee selects a hand-signal (and direction where applicable).

2. The referee blows the whistle once. The referee may use one hand to hold (and blow) the
whistle. The referee may instead leave the whistle held in their mouth without their hands.

3. 1s after blowing the whistle, the referee indicates the hand-signal for 10s.

4. During that time or within an additional 10 s, the robot must indicate the hand-signal that it
has identified by:

(a) Using its hand(s) to mirror the referee’s signal. That is, if the referee given a signals for
a decision for the “red team” using their right hand, the robot should mirror this signal
using the robot’s left hand, as the robot is facing the referee.

(b) Providing an audio phrase the referee’s decision, e.g., “‘Goal Red Team™”’. The exact
wording is up to the team, but should clearly identify the referee’s signal.

(c) (Optional), At the discretion of the GC/TCM developers, TCP messages may also be
sent and interpreted to display the outcome of the robot’s decision, however, this is not a
requirement for the execution of the challenge.

5. The length of time taken for the robot to indicate it’s interpretation from the referee blowing
the whistle is measured (rounded-up to the nearest second).

6. If the robot cannot identify the signal, it should remain motionless and provide no audio
output. A robot may continue to pose in the same position as the identified last signal.

7. While not providing a hand-signal or using the whistle, the head referee must keep both hands
flat and motionless by their side.

This procedure will be repeated five times. The referee should choose 2 one-hand static signals, 2
two-hand static signals, and 1 dynamic signal. Within each type, the referee randomly chooses a
hand-signal and direction.The same hand-signal may be chosen twice (with different directions).

B.2.3 Available Hand-Signals

Each hand-signal for the challenge is described and pictured. Note that for the purpose of clarity,
these do not necessarily correspond to human soccer hand-signals.




* Kick-in (colour) Team. One-handed signal. One arm, extended horizontally in the direction
of the half of the field corresponding to the team that receives the Kick-in Free Kick. That is,
right arm extended for the “Blue team”, and left arm extended for the “Red team”.

* Goal Kick (colour) Team. One-handed signal. One arm, extended 45-degree up in the

direction of the end of the field where the goal kick will occur. That is, right arm extended for
the “Blue team”, and left arm extended for the “Red team”.

¢ Corner Kick (colour) Team. One-handed signal. One arm, extended 45-degree down in the

direction of the end of the field where the corner kick will occur. That is, right arm extended
for the “Red team”, and left arm extended for the “Blue team”.

T




* Goal {(colour) Team. Two-handed signal. One arm, extended pointing at the center circle.
One arm, extended horizontally in the direction of the half of the field corresponding to the
team that scored the goal. That is, right arm extended for the “Blue team”, and left arm
extended for the “Red team”.

* Pushing Free-kick (colour) Team. Two-handed signal. One arm, vertical with bent elbow
and palm facing in the direction of the extended arm. One arm, extended horizontally in the
in the direction of the half of the field corresponding to the team that is given the penalty.
That is, right arm extended for the “Blue team”, and left arm extended for the “Red team”.

¢ Full-Time. Dynamic two-handed signal. Both arms slowly move symmetrically inward and

outwards on a horizontal plane, bending at the elbows. Note, for the purpose of this challenge,
the whistle associated with this signal should be a single blow, unlike in normal SPL games.

T




B.2.4 Challenge evaluation

A team scores 1 point for every hand-signal that is correctly identified. A team score an additional 1
point for correctly identifying the team corresponding to the signal (where appropriate). A team
looses 1 point for incorrectly identifying a hand-signal (note a team may have a negative final score).
The total time for the robot to identify each hand-signal is summed (If a robot fails to identify a
hand-signal the time for the hand-signal is 10s. If a robot incorrectly identifies a hand-signal, the
time is how long the robot took to provide the incorrect identification).

Teams are ranked by their total points. In the event of tie-breaks, the team with the fastest total time
to identify all hand-signals is ranked higher. The team with the highest total points, and lowest total
time (for tie-breaks), wins the challenge.




Appendix

Model Architectures

Following are the lists of all network layers for the 3D CNN, as well as 2D CNN with
GRU architectures. The input shape of all networks is: (None, 15, 112, 112, 3). "None"
is a placeholder for the batch size.

46



D. Model Architectures

Layer (type) Output Shape Parameters
conv3d 1 (Conv3D) (None, 15, 112, 112, 32) 2,624
batch norm 1 (BatchNormalization) (None, 15, 112, 112, 32) 128
max_poolingdd 1 (MaxPooling3D) (None, 7, 56, 56, 64) 0
conv3dd_2 (Conv3D) (None, 7, 56, 56, 64) 55,360
batch norm 2 (BatchNormalization) (None, 7, 56, 56, 64) 256
max_pooling3d 2 (MaxPooling3D) (None, 3, 28, 28, 64) 0
convdd 3 (Conv3D) (None, 3, 28, 28, 64) 221,312
batch norm 3 (BatchNormalization) (None, 3, 28, 28, 64) 512
max_ pooling3d 3 (MaxPooling3D) (None, 1, 14, 14, 128) 0
convdd_4 (Conv3D) (None, 1, 14, 14, 128) 442,496
batch norm 4 (BatchNormalization) (None, 1, 14, 14, 128) 512
max_poolingdd 4 (MaxPooling3D) (None, 1, 7, 7, 128) 0
flatten (Flatten) (None, 6272) 0
dense 1 (Dense) (None, 256) 1,605,888
batch norm 5 (BatchNormalization) (None, 256) 1024
dropout 1 (Dropout) (None, 256) 0
dense 2 (Dense) (None, 256) 65,792
batch _norm 6 (BatchNormalization) (None, 256) 1024
dropout 2 (Dropout) (None, 256) 0
dense_ 3 (Dense) (None, 64) 16,448
dense 4 (Dense) (None, 12) 780
Total parameters: 2,414,156

Trainable parameters: 2,412,428

Non-trainable parameters: 1,728

Table D.1.: 3D CNN Architecture

Layer (type) Output Shape Parameters
td_mobilenet (TimeDistributed MobileNet) (None, 15, 3, 3, 1024) 3,228,864
td_bnorm (TimeDistributed BatchNormalization) (None, 15, 3, 3, 1024) 4096
td_maxpool (TimeDistributed MaxPooling2D)  (None, 15, 1, 1, 1024) 0
td flatten (TimeDistributed Flatten) (None, 15, 1024) 0
gru (GRU) (None, 64) 209,280
dropout 1 (Dropout) (None, 64) 0
dense 1 (Dense) (None, 128) 8,320
dropout 2 (Dropout) (None, 128) 0
dense 2 (Dense) (None, 12) 1,548

Total parameters: 3,452,108
Trainable parameters: 3,428,172
Non-trainable parameters: 23,936

Table D.2.: 2D CNN with GRU Architecture

47



o .

Appendix

Nao Robot Code

On the following three pages the code is presented for the TfLiteRefereePerceptor
module that runs on the Nao robot. The explanation of the code can be found in
tion 9.9l

TfLiteRefereePerceptor::TfLiteRefereePerceptor() {
// Load the model and initialize interpreter
std::string model_path = "/Config/Models/models-master/Base/Referee/model_0530_t12.tflite";

auto absolutePath = std::string(File::getBHDir()) + model_path;
model_ = tflite::FlatBufferModel::BuildFromFile(absolutePath.c_str());
ASSERT (model_ != nullptr);

tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder builder(*model_, resolver);
builder(&interpreter_);
VERIFY(interpreter_->AllocateTensors() == kTfLiteOKk);

OUTPUT_TEXT("TfLiteRefereePerceptor: Loaded model and initialized interpreter!");
EXECUTE_ONLY_IN_DEBUG(tflite::PrintInterpreterState(interpreter_.get()););

// Fetch input shape and check dimensions

VERIFY(interpreter_->inputs().size() == 1 && interpreter_-s>outputs().size() == 1);
auto input = interpreter_->input_tensor(0);

auto output = interpreter_->output_tensor(9);

// Input dimensions: 15 frames, 112x112 image, 3 channels
VERIFY (input->dims->size == 4 && input->dims->data[@] == 15 && input->dims->data[l] == 112 &&
input->dims->datal[2] == 112 && input->dims->datal3] == 3);

// Outputs dimensions: Vector with probabilites for each of the 12 signals (including NO-signal)
VERIFY (output->dims->size == 1 && output->dims->datal[@] == 12);

// Input tensor for the network: Load the image data into this tensor
input_tensor = interpreter_->typed_input_tensor<float>(0);

// Two last predictions: @ (NO-signal) at start
last_pred = 0;
second_last_pred = 0;

Figure E.1.: Module Constructor

48



65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

E. Nao Robot Code

void TfLiteRefereePerceptor::load_frame(Image current_image, int nr_frames, floatx input_tensor) {
// Convert image to CVMat in order to resize
cv::Mat image = current_image.convertToCVMat();
cv::Mat image_resized;
cv:i:resize(image, image_resized, cv::Size(112,112), cv::INTER_LINEAR);

// Import back to "Image" file since that's how pixel data can be read for input tensor
Image resized_YCrCb;
resized_YCrCb.importFromCVMat(image_resized);

// Function “importFromCVMat" uses YCrCb so convert to RGB
Image resized_RGB;
resized_RGB.convertFromYCbCrToRGB(resized_YCrcCb);

for (size t y=0; y<112; ++y) { // height

for (size_t x=0; x<112; ++x) { // width
// Load RGB data into network input tensor, normalized to [0,1]
// Input tensor dimensions: (frames, height, width, channels:BGR)
input_tensor[3x112x112knr_frames + 3%112xy + 3xx] = (float)(resized_RGB[y] [x].b)/255;
input_tensor[3%112%112%nr_frames + 3%112%y + 3%x + 1] (float) (resized_RGB[y] [x].g)/255;
input_tensor[3%112%112%nr_frames + 3%112%y + 3%x + 2] (float) (resized_RGB[y] [x].r)/255;

¥

}

return;

Figure E.2.: Module Function load_frame

void TfLiteRefereePerceptor::predict() {
VERIFY(interpreter_->Invoke() == kTfLiteOk);

// Network output: probabilities for 12 signals
floatx output = interpreter_->typed_output_tensor<float>(0);

// Find argmax signal (default: no signal)
int signal = @;
for (int i=1; i<12; ++i) {
//OUTPUT_TEXT("Prob " << 1 << " % " << int(output[i]*10@));
if (output([i] > output([signall) {
signal = i; // new most likely gesture

}

// If confidence % over threshold say prediction (unless NO-signal or same as prev prediction)
int confidence = int(output[signall*100);
if ((confidence >= conf_threshold) && (signal != 2)) {
if (signal != last_pred) {
// Signals 1-10 sound, only if predicted for the first time
say_prediction(signal); // won't say anything for signal 11

else if ((signal == 11) && (signal !'= second_last_pred)) {
// Signal 11 sound, only if predicted exactly twice in a row
SystemCall::playSound("fullTime.wav");

// new last predictions
second_last_pred = last_pred;
last_pred = signal;

b

// Output prediction and confidence
OUTPUT_TEXT("Predicted signal: " << signal);
OUTPUT_TEXT("Confidence %: " << confidence);
return;

Figure E.3.: Module Function predict

49



E. Nao Robot Code

128  void TfLiteRefereePerceptor::say_prediction(int signal) {

129 // Play sound for each signal

130 if (signal == 1 || signal == 2) {

131 SystemCall::playSound("kickIn.wav");

132 }

133 else if (signal == 3 || signal == 4) {

134 SystemCall::playSound("goalKick.wav");

135 }

136 else if (signal == 5 || signal == 6) {

137 SystemCall::playSound("cornerKick.wav");
138 }

139 else if (signal == 7 || signal == 8) {

140 SystemCall::playSound(“goal.wav");

141 }

142 else if (signal == 9 || signal == 10) {

143 SystemCall::playSound("pushingFreekick.wav");
144 }

145

146 // Corner-kick

147 if (signal == 5 || signal == 6) {

148 // even number: red team (referee right arm)
149 if (signal % 2 == 0) {

150 SystemCall::playSound("redTeam.wav");

151 }

152 // odd number: blue team (referee left arm)
153 else {

154 SystemCall::playSound("blueTeam.wav');
155 }

156 }

157

158 // Kick-in, Goal-kick, Goal and Pushing Free-kick
159 else if (signal != 11) {

160 // even number: blue team (referee right arm)
161 if (signal % 2 == 0) {

162 SystemCall::playSound("blueTeam.wav");
163 }

164 // odd number: red team (referee left arm)
165 else {

166 SystemCall::playSound("redTeam.wav");

167 }

168 }

169

170 return;

171 }

Figure E.4.: Module Function say_prediction

173 woid TfLiteRefereePerceptor::update(RefereePercept& refereePercept) {

174 Image current_image = thelmage; // read current Image from camera
175

176 // load frame data into input tensor of netwokr

177 load_frame(current_image, refereePercept.nr_frames, input_tensor);
178

179 // increase nr_frames counter (in RefereePercept Representation)
180 ++refereePercept.nr_frames;

181

182 //if 15 frames in stack call predict() and reset()

183 if (refereePercept.nr_frames == 15) {

184 predict();

185 refereePercept.reset(); // nr_frames set to @ (overwrite input_tensor)
186 }

187 return;

188 }

Figure E.5.: Module Function update

50



Appendix

File Structure

The repository is not made public, due to the fact that the RoboCup competition has
not taken place yet. For access to the repository contact: lukas.molnar@bluewin.ch.

The file structure of the repository can be found on the following page.

51


mailto:lukas.molnar@bluewin.ch

F. File Structure

/

| README ........ A README with instructions for using the dataset and models

| MAIN. DY ettt e e e e Main file to train models

| model_builder.py ............ Builds models and prepares dataset for training

| _models_cnn_clstm.py .. Models not covered in this report (worse performance)

| models_cnn_tl.py ......ennnnn. 3D CNN model and 2D CNN with GRU model

| models_res3d_clstm.py ...........cooviinnnn 3D CNN with ConvLSTM model

| figures/ ... Folder for confusion matrix figures
evaluate.py ......... Creates confusion matrix figure (enter path to model)
...(Confusion matrices)

| _histories/ ....... .. i Folder for histories of trained models

tcreate_plots.py ............................ Creates plot of model history

...(History files)

| _outputs/ ... Folder for model outputs during training

... (Output files)

| _pretrained/ ..................... Folder for pretrained model files (on IsoGD)
...(Pretrained ".h5" files)

| _referee_dataset/ ..., Folder for referee dataset files
create_labels.py ........... Create CSV file of labels once frames are split
edit_frames.py Split data into sequences length 15 and replace greenscreen
edit_frames_no_greenscreen.py ....... Split data into sequences length 15
split_train_val.py ............ Split processed data into train and val sets
... (Background images)

| tflite_files/ .......oiiiiiiiiiinn... Folder for TfLite files of trained models
tflite_converter.py .............oeee... Convert ".h5" model file to TfLite
tflite_converter_quant.py ......... Convert to TfLite using quantization

...(TfLite files)

52



F. File Structure

93



Bibliography

[1]

2]

13]

4]

15]

6]
7]

18]

19]

[10]

Pérez-Enciso and L. Zingaretti, “A guide for using deep learning for complex trait
genomic prediction,” Genes, vol. 10, p. 553, 07 2019.

R. Wattenhofer, “Computational thinking,” Distributed Computing, ETH Zirich,
2021.

DProgrammer, “Rnn, Istm & gru,” accessed on 29.05.2022. |Online|. Available:
http://dprogrammer.org/rnn-lstm-gru

K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history
of 2d cnns and imagenet?” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 6546-6555.

L. Zhang, G. Zhu, L. Mei, P. Shen, S. A. A. Shah, and M. Bennamoun, “Attention in
convolutional Istm for gesture recognition,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS'18. Red Hook,
NY, USA: Curran Associates Inc., 2018, p. 1957-1966.

“Robocup,” accessed on 29.05.2022. [Online|. Available: https://www.robocup.org

“Robocup standard platform league,” accessed on 29.05.2022. [Online]. Available:
https://spl.robocup.org

S. Robotics, “Nao,” accessed on 29.05.2022. [Online]. Available:  |https:
/ /www.softbankrobotics.com/emea/en /nao

R. T. Committee, “Robocup standard platform league (nao) rule book,” accessed
on 29.05.2022. [Online|. Available: https://spl.robocup.org/wp-content/uploads/
SPL-Rules-master.pdf

D. K. Singh, “3d-cnn based dynamic gesture recognition for indian sign language
modeling,” Procedia Computer Science, vol. 189, pp. 76-83, 2021, al in
Computational Linguistics. |Online|. Available: https://www.sciencedirect.com/
science/article/pii/S1877050921011650

54


http://dprogrammer.org/rnn-lstm-gru
https://www.robocup.org
https://spl.robocup.org
https://www.softbankrobotics.com/emea/en/nao
https://www.softbankrobotics.com/emea/en/nao
https://spl.robocup.org/wp-content/uploads/SPL-Rules-master.pdf
https://spl.robocup.org/wp-content/uploads/SPL-Rules-master.pdf
https://www.sciencedirect.com/science/article/pii/S1877050921011650
https://www.sciencedirect.com/science/article/pii/S1877050921011650

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

23]

Bibliography

S. Joffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015. [Online|. Available:
https: / /arxiv.org/abs/1502.03167

Keras, “Batchnormalization layer,” accessed on 29.05.2022. [Online|. Available:
https:/ /keras.io/api/layers/normalization layers/batch normalization/

V. Lendave, “Lstm vs gru in recurrent neural network: A comparative study,”
2021, accessed on 29.05.2022. |Online|. Available: https://analyticsindiamag.com/
Istm-vs-gru-in-recurrent-neural-network-a-comparative-study /

Peltarion, “Categorical crossentropy,” accessed on 29.05.2022. [Online|]. Avail-
able: https: / /peltarion.com /knowledge-center /documentation /modeling-view/
build-an-ai-model /loss-functions/categorical-crossentropy

U. of Central Florida, “Ucf101 - action recognition dataset,” accessed on 29.05.2022.
[Online|. Available: https://www.crcv.uctf.edu/data/UCF101.php

S. Lab, “Hmdb: a large human motion database,” accessed on
29.05.2022.  [Online|.  Available: https:/ /serre-lab.clps.brown.edu/resource/
hmdb-a-large-human-motion-database/

D. Kushwaha, “Gesture  recognition  using convdd and  trans-
fer learning convolutional rnn architecture,” accessed on
29.05.2022. [Online]. Available: https://github.com /deepakush /

Gesture-Recognition- Using- Conv3D-and-transfer-learning- Convolutional-RNN-architecture

TensorFlow, “tfkeras.applications.mobilenet.mobilenet,” accessed on 29.05.2022.
[Online].  Available: https://www.tensorflow.org/api docs/python/tf/keras/
applications/mobilenet /MobileNet

L. Zhang, G. Zhu, P. Shen, J. Song, S. A. Shah, and M. Bennamoun, “Learning
spatiotemporal features using 3denn and convolutional Istm for gesture recognition,”
in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW),
2017, pp. 3120-3128.

J. Wan, “Chalearn lap isogd database,” accessed on 29.05.2022. [Online|. Available:
http://www.cbsr.ia.ac.cn/users/jwan/database /isogd.html

G. Zhu, “Attentionconvlstm,” accessed on 29.05.2022. |Online|]. Available:
https:/ /github.com/GuangmingZhu/AttentionConvLSTM

TensorFlow,  “tfkeraslayers.convlstm2d,”  accessed on 29.05.2022. [On-
line]. Available:  https://www.tensorflow.org/api docs/python/tf/keras/layers/
ConvLSTM2D

GeeksforGeeks, “Intuition of adam optimizer,” accessed on 29.05.2022. [Online].
Available: https://www.geeksforgeeks.org/intuition-of-adam-optimizer/

95


https://arxiv.org/abs/1502.03167
https://keras.io/api/layers/normalization_layers/batch_normalization/
https://analyticsindiamag.com/lstm-vs-gru-in-recurrent-neural-network-a-comparative-study/
https://analyticsindiamag.com/lstm-vs-gru-in-recurrent-neural-network-a-comparative-study/
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://www.crcv.ucf.edu/data/UCF101.php
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://github.com/deepakush/Gesture-Recognition-Using-Conv3D-and-transfer-learning-Convolutional-RNN-architecture
https://github.com/deepakush/Gesture-Recognition-Using-Conv3D-and-transfer-learning-Convolutional-RNN-architecture
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet/MobileNet
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet/MobileNet
http://www.cbsr.ia.ac.cn/users/jwan/database/isogd.html
https://github.com/GuangmingZhu/AttentionConvLSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM2D
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/

Bibliography

[24] Viso.ai, “Tensorflow lite - real-time computer vision on edge devices,” accessed on
29.05.2022. |Online|. Available: https://viso.ai/edge-ai/tensorflow-lite/

[25] TensorFlow, “Tensorflow lite c++ api reference,” accessed on 29.05.2022. [Online].
Available: https://www.tensorflow.org/lite/api docs/cc

[26] OpenCV, “Image file reading and writing,” accessed on 29.05.2022. [Online].
Available: https://docs.opencv.org/3.4/d4/da8/group  imgcodecs.html

[27] V. Sharma, M. Jaiswal, A. Sharma, S. Saini, and R. Tomar, “Dynamic two hand
gesture recognition using cnn-lstm based networks,” in 2021 IEEE International
Symposium on Smart Electronic Systems (1SES), 2021, pp. 224-229.

56


https://viso.ai/edge-ai/tensorflow-lite/
https://www.tensorflow.org/lite/api_docs/cc
https://docs.opencv.org/3.4/d4/da8/group__imgcodecs.html

	List of Acronyms
	Introduction
	Motivation
	Objective

	Background
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Training Network Weights

	Related Work
	3D Convolutional Neural Networks
	Deep 3D CNNs
	Shallow 3D CNNs

	Recurrent Neural Networks
	Combining 2D CNNs with LSTM or GRU
	Combining 3D CNNs with Convolutional LSTM


	Dataset
	Data collection
	Setup
	Procedure

	Image Processing
	Finalizing the Dataset

	Implementation
	Implemented Models
	3D CNN
	2D CNN with GRU
	3D CNN with Convolutional LSTM

	Training Models on the new Dataset
	Implementing Models on the Nao Robot
	Loading Models as TfLite Files
	Running Models in Real-Time


	Results and Discussion
	3D CNN
	2D CNN with GRU
	3D CNN with Convolutional LSTM
	Summary

	Conclusion and Future Work
	Task Description
	Declaration of Originality
	RobCup Visual Referee Challenge Description
	Model Architectures
	Nao Robot Code
	File Structure

